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ABSTRACT

A plethora of statistical learning methods have arisen over the years to better model the underlying

relationships in data. Yet, when performing binary classification, logistic regression is often the first

tool of choice among statisticians. In this paper we examine the performance of several machine

learning algorithms on various datasets with a binomial response, using both simulated data and

real world data, and compare the performance to logistic regression. Overall, we find that no single

method outperforms all the others, but recommend regularized logistic regression as an improvement

to logistic regression when the number of predictors is comparable to, or exceeds, the number of

observations.
Keywords: Binary Classification — Logistic Regression — Neural Networks — Random Forest —

Regularized Logistic Regression — Support Vector Machines

1. INTRODUCTION

The purpose of this study is to observe the behavior

of classification methods in a controlled binomial envi-

ronment. Statisticians instinctively reach for logistic re-

gression when presented with a binary response, regard-

less of other underlying data characteristics. Offering

a comparison of binomial classification methods under

controlled conditions should sharpen this initial intu-

ition. Logistic regression models, decision trees, neu-

ral networks, regularized logistic regression models, and

support vector machines will all be fit and tested using

sets of simulated data. Properties such as flexibility, ro-

bustness, and scalability will be considered along with

the traditional sensitivity and specificity metrics to eval-

uate model performance. Sets of continuous features will

be generated from common distributions, and the rela-

tionship between the predictors and the response will be

examined. Binomial responses are prevalent throughout

society, so the simulated data will mimic situations with

a binary response.

2. SIMULATION STUDY

Each of the five methods that will undergo investi-

gation involve some sort of fine tuning to obtain an

optimal fit. The probability threshold for logistic re-

gression will need to be adjusted if a more conserva-

tive or anti-conservative threshold is necessary. Random

forests, an ensemble-based decision tree method, require

two parameters that involve a minimal amount of opti-

mal specification. The convergence of the out-of-bag

(OOB) error, the mean of the training error, will signal

the appropriate number of trees. Identifying the number

of layers and tuning the adaptive weights of the edges

are just two of the primary challenges involved with the

implementation of an artificial neural network. An ap-

propriate ridge tuning parameter for regularized logis-

tic regression will be identified using cross validation.

Lastly, the optimization of the cost parameter for sup-

port vector machines (SVMs) will be induced through a

heuristic proposed by Joachims that tunes the inverse of

a regularization constant based on the steepest feasible

descent.

2.1. Overview

A simulation study will be carried out under a

plethora of controlled settings. By adjusting the levels

of dimensionality and sample size (p and n), the gen-

eral performance of the selected binomial classification

methods will be assessed. For each possible combina-

tion of p and n, where p ∈ {1, 10, 50, 100, 500, 1000} and

n ∈ {10, 50, 100, 500, 1000, 10000}, the test error will be

considered and comparisons will be made with the Bayes

error rate. In order to allow for a more realistic compu-

tation time, only a subset of the possible values of p will

be used during the fitting process. Instead of fitting each

model with 1 through 1000 predictors for every combi-

nation of n and p, appropriate ranges were calculated for

each p being examined. The following subsets of predic-

tors will be used to mimic underfitting and overfitting:

• p = 1, range = (1, 2, 3, 4,..., 21)

• p = 10, range = (1, 2, 4, 6,..., 40)

• p = 50, range = (10, 14, 18, 22,..., 90)

• p = 100, range = (20, 28, 36, 44,..., 180)

• p = 500, range = (340, 356, 372, 388,..., 660)
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• p = 1000, range = (360, 392, 424, 456,..., 1000)

The baseline setting will impose the standard assump-

tions of independent, continuous predictors and a true

underlying linear relationship between the predictors

and response. A future analysis of model performance

could introduce characeristics such as multicollinearity,

categorical features, and true non-linear relationships,

but these will not be tested during this study.

Once the test errors have been obtained, each specified

setting will be represented by a plot, which will provide

side-by-side comparisons of the errors from each of the

five binomial classification methods. Therefore, 36 plots

will be constructed to summarize the initial results from

this simulation study.

2.2. Traditional and Regularized Logistic Regression

Logistic regression was implemented, with observa-

tions whose predicted probabilities were higher than 0.5

being assigned to class 1, and observations whose pre-

dicted probabilities were less than or equal to 0.5 being

assigned to class 0. Regularized logistic regression was

also carried out using the ridge regression method. The

optimal tuning parameter λ for each model was found

via cross-validation.

2.3. Support Vector Machines

Using a set of training data where each instance is

either identified as being a ”success” or ”failure,” a sup-

port vector machine (SVM) constructs a model that as-

signs new observations to one of the two categories. The

SVM creates a hyperplane, and each training data in-

stance is represented as a point in the space. The func-

tional margin, the distance to the nearest training in-

stance in either group, should be as large as possible.

When the functional margin is maximized, a clear gap

will ideally exist between the two categories, which will

in turn minimize the generalization error of the SVM.

Each new observation is mapped onto the hyperplane,

and its location with respect to the functional margin

determines whether the test instance is assigned to class

1 or 0.

For the purpose of this simulation study, the SVM

will be formulated as a linear classification method by

solving the following optimization problem with respect

to αi:

f(x) =

N∑
i

αiyi(x
T
i x) + b (1)

2.4. Neural Networks

Neural networks consist of a collection of layered nodes

(i.e., neurons) that take input from one or more nodes

from the previous layer and combine with other nodes
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Figure 1. Example neural network for p = 5.

in the respective layer, along with some activation func-

tion which depends on the node input values and node

weights. Neural networks, and in particular deep neural

networks, are incredibly powerful tools used in achiev-

ing state of the art results in various areas of applica-

tions from image classification (Krizhevsky et al. 2012)

to playing the game Go (Silver et al. 2016). However,

given the number of parameters and data points consid-

ered in the setting of this experiment, only neural net-

works with one hidden layer were considered. In fact,

several tests were performed with deep networks, for the

sake of completeness, and the results were worse than

the single hidden layer models by around ten percent-

age points of test error. Further, they required more

time to train and due to their increased flexibility, likely

resulted in highly overfitted models (hence the worse

tests error).

A. Network Architecture

The networks were built such that the hidden layer

had the same number of nodes as the input layer, and

the output layer had two nodes, corresponding to 1 and

0. The input node had as many inputs as there were fea-

tures. Of course, it follows from this network definition

that the network architecture changed across the vary-

ing p values of the given test and training set, adapting

to the size of the problem. See figure 1 for a sample

network architecture for p = 5.

The input layer uses the rectifier (2) as its activation

function while the hidden layer uses the softmax activa-
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tion function (3).

f(x) = max{0, f(x)} (2)

f(x) = log(1 + ex) (3)

Where x is actually the inner product of the input

vector x and the weight vector θ.

B. Training

Optimization was performed using stochastic gradient

descent with momentum as well as Nesterov acceleration

(Nesterov 1983). Thus at each step the parameter is

updated via equations 4.

vn+1 = γvn + η∇θJ(θ − γvn) (4)

θn+1 = θn − ηn+1

Where θ is the weight vector, γ the learning rate, η

the momentum factor, J(x) the cost function, and vi the

momentum term. Stochastic gradient descent was cho-

sen due to the lower computational burden when com-

pared to higher order methods such as BFGS.

Training was somewhat challenging due to the time

complexity of the training process. The model training

was performed on a 3.4GHz Intel i7 hexacore processor

with 64GB of RAM, and a GTX 1080 graphics card (for

hardware acceleration via CUDA). Training and valida-

tion (using a test data set of 1,000 points) took around

12 hours and was done using mini-batches of 50 points

and 50 epochs. Increasing the epoch count to 100 or 200

may have resulted in lower test error, but at the cost of

additional computational burden.

2.5. Random Forest

Since the monumental study by King et al. (1995),

new methods have come to the forefront of machine

learning. Among these are the tree based methods bag-

ging, random forest, and boosting, where a large number

of decision trees are combined together to improve pre-

diction accuracy.

Here, we consider the random forest learning algo-

rithm, which uses less parameters than boosting and

includes bagging as a special case. Random forest oper-

ates under two parameters: the number of trees and the

number of predictors m to consider at each split in the

tree. Two common ways of choosing m are to set it equal

to the square root of the number of predictors, m =
√
p,

or the by taking the base-2 logarithm, m = log2 p.

10-fold cross-validation was used to select the num-

ber of trees and decide between these two cases of

m. The dataset consisted of 180 predictors (100 true),

while the number of samples was chosen from the set

n ∈ {20, 180, 1200}, corresponding to the cases where
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Figure 2. 10-fold cross validation error for three cases of n,
the number of trees, and p, the number of predictors. The
shaded regions represents the 95% (2σ̂) confidence interval
on the mean.

n � p, n ≈ p, and n � p. The number of trees was

varied from 1 to 5000, and the corresponding misclassi-

fication rates can be found in Figure 2.

Overall, we found similar results for the two cases of

m; therefore we follow the standard practice and set

m =
√
p. When it comes to the number of trees, the mis-

classification rate tends to flatten out after Ntree = 1000

for the cases n ∈ {180, 1200}. For the case n� p, how-

ever, having more trees appears to result in misclassifi-

cations rates worse than random guessing, perhaps due

to overfitting the training dataset. Since 1000 trees was

roughly the optimal amount in 2 of the 3 cases, we select

this as the number of trees in our model.



4

3. APPLICATION

After the conclusion of the simulation study, the valid-

ity of the results will be confirmed using ARCENE mass-

spectrometric data (Guyon et al. 2004) and Parkinson’s

disease data (Little et al. 2007) from the UCI machine

learning repository. The former set of data has con-

tinuous features, high-dimensionality, and a relatively

small number of instances, while the latter has low-

dimensionality and a relatively large sample size. The

ARCENE data was originally prepared for the 2003

NIPS feature selection challenge, and is a popular high-

dimensional teaching tool within the academic commu-

nity. The Parkinson’s disease data was compiled by

University of Oxford researchers in collaboration with

the National Center for Voice and Speech, and its orig-

inal purpose was to study feature extraction for voice

disorders. Findings that hold true under these real-

world data sets as well as the simulated data will pro-

vide insight regarding the appropriate initial classifica-

tion method for a given binary setting.

4. RESULTS

4.1. Simulation Study

The results of the simulation study are summarized

in Figures 3 through 8. Each figure shows, for a given

value of n, the model test errors for six true values of p.

The six sub-plots in each figure illustrate the trajecto-

ries of the test errors as additional predictors are added

to the models. Ten replications of the simulations were

carried out to obtain estimates of the standard errors, as

displayed in the figures. Some general trends can be ob-

served from the series of figures. In particular, the ran-

dom forest method performs quite poorly in all settings.

Its tendency to produce test errors oscillating around 0.5

when the true p is not equal to 10 is problematic since

this is analogous to guessing. Logistic regression and

regularized logistic regression had similar performance

when n > p, but as p becomes greater than n, regular-

ized logistic regression established itself as the superior

method. This behavior was expected due to the restric-

tions of logistic regression and propriety of regularized

logistic regression when p > n. By shrinking the coeffi-

cient estimates, regularized logistic regression decreases

the variance and increases the bias. This increase in

bias is out-weighted by the decrease in variance, thus

resulting in an overall decrease in the test error. Larger

sample sizes induced a decrease in the variability of the

test error estimates for the three methods mentioned

above. However, the stability of the estimates for neural

networks and support vector machines increases as the

number of predictors in the generative models increase

relative to the bounds of the specified subsets.

Figures 3 and 4 suggest that the estimates of the test

error become more stable as the number of parameters

increases in a small sample setting. As the stability in-

creases, the test errors tend to diverge further from the

Bayes error rate, indicating a negative trend in predic-

tive performance. This decrease in variability uncloaks

similar test errors between all five methods. Regularized

logistic regression performs quite well when the true p

is less than the sample size, but as true p surpasses n,

neural networks provide the smallest test errors.

The simulation results from large sample settings are

delineated in Figures 5 through 8. When the true p is

relatively small, both support vector machines and neu-

ral networks exhibit unexpected behavior in the plots.

Both methods have test errors below the Bayes error

rate, and extremely inaccurate estimates of these test

errors. Neural networks seem to perform better when

underfitting since the test errors increase as more pre-

dictors are added, regardless of the true p. Alternatively,

regularized logistic regression has high test error when

underfitting, but maintains a constant, lower test error

when p is greater than or equal to the true p. Due to

the subset of predictors being tested, the issue of under-

fitting or overfitting does not have pronounced impact

on SVM and random forest when the true p is large.

4.2. Real World Datasets - Parkinsons and ARCENE

The ARCENE training and validation datasets were

combined, resulting in 200 observations with 10000 pre-

dictors. Examining our simulation results in this high

dimensional space, we expect neural networks and regu-

larized logistic regression to perform best, while logistic

regression is likely to perform rather poorly.

For each method, we performed 10-fold cross-

validation on the data, computing the mean misclas-

sification rate and its corresponding uncertainty. Our

results are summarized in Table 1.
Neural network and regularized logistic regression per-

formed as expected, producing relatively low misclassifi-

cation rates, while logistic regression performed poorly,

consistent with random guessing; SVM performed best.

Perhaps most surpising was the performance of random

forest: having performed no better than random guess-

ing over most of our simulation, it suddenly rivals the

other models in prediction accuracy.

In contrast to ARCENE, the Parkinsons dataset was

a relatively low dimensional space, having 195 observa-

tions with only 22 predictors. Looking at the simula-

tion study, the neural network and SVM models outper-

formed the Bayes error in this regime, suggesting some-

thing else going on with these models. Assuming these

small errors are indicative of true performance, however,

we would roughly expect the logistic, regularized logis-

tic, neural network, and SVM models to perform about

the same on the Parkinsons dataset, with random forest
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lagging behind.

Our 10-fold cross validation results are summarized in

Table 2. We find that logistic, regularized logistic, neu-

ral network, and SVM all perform about equally well, as

we would expect. Somewhat surprisingly, however, ran-

dom forest is the clear winner on the Parkinson’s dataset

by a wide margin, with the other models all obtaining

approximately the same test error.

Table 1. ARCENE

Method Mean Error Uncertainty

Logistic Regression 0.470 0.138

Neural Network 0.157 0.056

Random Forest 0.149 0.105

Regularized Logistic 0.105 0.064

Support Vector Machine 0.090 0.039

Note—10-fold cross-validation results on the combined
ARCENE test and validation datasets, with 200 observa-
tions and 10000 predictors. Misclassification rates were av-
eraged over each of the folds, and the uncertainty found
by taking the standard deviation of the 10 misclassification
rates.

Table 2. Parkinsons

Method Mean Error Uncertainty

Logistic Regression 0.170 0.110

Neural Network 0.255 0.072

Random Forest 0.093 0.022

Regularized Logistic 0.252 0.059

Support Vector Machine 0.201 0.097

Note—10-fold cross-validation results on the Parkinsons
dataset, with 195 observations and 22 predictors. Misclas-
sification rates were averaged over each of the folds, and
the uncertainty found by taking the standard deviation of
the 10 misclassification rates.

5. CONCLUSION

While the results for logistic and regularized logistic

regression followed expectation, the remaining models

achieved somewhat puzzling results in a number of cases.

Part of this is likely due to overfitting or poor tuning,

but in some cases there appears to be a more subtle, un-

derlying issue. Results from the simulation study carried

over for the ARCENE dataset, but diverged by quite a

bit in the Parkinsons dataset.

We had originally planned to also simulate under var-

ious alternative settings with multicollinearity present,

categorical predictors, and non-linear true relationships,

but the scope of the study became unrealistically large.

Therefore, introducing these characteristics would be an

interesting future research project.
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Figure 3. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 10.
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Figure 4. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 50.
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Figure 5. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 100.
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Figure 6. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 500.
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Figure 7. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 1000.
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Figure 8. The six plots above compare the logistic regression, regularized logistic regression, random forests, and SVM to the
Bayes error rate for the six combinations of p and n = 10000.


