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More methods?

Assumptions for traditional models can be difficult to satisfy with
real-life count data

From observation, the acknowlegement of some subsequent methods
for count data is underwhelming

Likely from the lack of application

Utilization of non-traditional methods can give freedom to
appropriately choose a model that better captures nuances in a
particular dataset (more tools for the toolbox)
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Typical models for types of count data

Linear regression:
Can provide a good approximation when counts are relatively large
Assumes normally-distributed errors

Yi = β0 + β1xi1 + ...+ βpxip + εi

εi ∼ N(0, σ2)

Poisson regression:
Very common approach when normal approximation does not appear to
work
Assumes equi-dispersion

E [Yi |Xi ] = V [Yi |Xi ]
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Typical models for types of count data
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Figure 1: Distributions of randomly-generated Poisson R.V’s varying by mean
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Typical models for types of count data

Negative Binomial regression:
Frequently used for over-dispersed count data

E [Yi |Xi ] < V [Yi |Xi ]

What if we have...

Known restrictions on distribution of the outcome variable?
Underdispersion?

Let’s first review Poisson regression!
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Poisson regression

If the probability mass function (PMF) is

P(Y = y |λ) =
e−λλy

y !

then
Y |λ ∼ Poisson(λ)

Defined for Y = 0, 1, 2, ...;λ > 0

E [Y ] = V [Y ] = λ← mean equals variance (equidispersion)

Implying SD[Y ] =
√
λ
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Poisson regression

Regression formulation:

For i = 1, 2, ..,N, assume the link

log(λi ) = β0 + β1xi1 + ...+ βpxip = Xiβ

Plug into PMF

P(Yi = yi |λi ) =
e−λiλyii
yi !

=
e−e

Xiβ(eXiβ)
yi

yi !

Find parameter estimates, β̂, via maximum likelihood estimation
(MLE)

R code:

model <- glm(Y~X, data, family = ‘poisson’)

Interpretation of βj :
The average response multiplies by eβj for every unit increase in xj ,
holding all other predictors fixed.
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Zero-truncated Poisson regression

Adjust Poisson PMF:

P(Yi = yi |Yi > 0, λi ) =
P(Yi = yi ,Yi > 0)

1− P(Yi = 0)
=

e−λiλyii
yi !

1

1− e−λi

Simply redistributes the probability mass at 0 from the unconditional
distribution

Define the linear predictor the same as in Poisson regression

log(λi ) = β0 + β1xi1 + ...+ βpxip = Xiβ

Find the MLE’s, β̂, using the zero-truncated PMF in the likelihood
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How is inference and prediction affected when Poisson
regression is used on zero-truncated data?

Hypothesis:
Coverage probabilities and predicted means are most inaccurate when
the magnitude of counts are small. They will gradually improve as the
data shifts away from 0.

Coverage probability of confidence intervals:
If the sampling process was repeated “many” times, it’s expected that
100(1− α)% of confidence intervals will contain the parameter of
interest. α = Type I error rate.

We can get at the answer with simulation!
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Simulation #1: Set-up

Define
log(λi ) = β0 + 0.01Xi1 + 0.125Xi2 + 0.20Xi3

where

Xi1 ∼ Uniform(0, 1) Xi2 ∼ N(0, 0.5) Xi3 ∼ Binomial(1, 0.5)

β0 = {0, .25, .5, ..., 3.75, 4} ← Shifts magnitude of counts

N = {10, 25, 50, 100, 500, 1000} ← Sample size
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Simulation #1: Set-up
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Figure 4: Example distributions of simulated data for varying intercept
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Simulation #1: Process

Repeat the following for all combinations of N and β0:

1 Randomly generate X1, X2, and X3 of size N from their respective
distributions

2 Calculate λi for all N observations using the defined linear predictor
3 Randomly generate zero-truncated Poisson realizations for each λi

This is the response variable Y

4 Fit standard Poisson regression model on Y using X1, X2, and X3

5 Compute a 95% confidence interval for each model parameter and
indicate whether it contains the true coefficient.
Compute mean absolute difference (MAD) between the true and
predicted λi ’s

MAD =

∑n
i=1 |λi − λ̂i |

n
6 Repeat 1-5 for S = 1000 samples

7 Calculate the proportion of intervals containing the true parameter
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Simulation #1: Results
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Figure 5: Sample average vs. coverage probabilities for model parameters by
sample size
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Simulation #1: Results
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Figure 6: Sample average vs. (relative) MAD between predicted and true λi ’s by
sample size
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Observations from Simulation #1

Coverage probabilities are unstable when counts are small

Overcoverage is not a good thing. Generally means large standard
errors.

Quickly converge to correct coverage probabilties as sample average
get past 10 or so

Sample size has largest effect on intercept term with respect to
coverage

Focuses more on the wrong thing as sample size increase ← Bias

Larger sample size gives closer predictions to true λi across the board

MAD dramatically decreases as data shifts away from zero

MAD decreases at a faster rate as sample size increases
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Remarks on zero-truncated count data

The apparent underdispersion may be exaggerated if standard Poisson
regression was used

When counts are ‘small’, model misspecification (i.e. using Poisson
regression) is prone to poor inference and prediction

If there appears to be a ‘cliff’ at zero, stay away from Poisson
regression
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A model for under-dispersed count data

Recall:

Poisson regression is appropriate for equi-dispersion

E [Y ] = V [Y ]

Negative binomial regression is appropriate for over-dispersion

E [Y ] < V [Y ]

Is there a model appropriate to handle under-dispersed count data?

E [Y ] > V [Y ]
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Conway-Maxwell (COM) Poisson distribution

If

P(Yi = yi |λi , ν) =
λyii

(yi !)νZ (λi , ν)

for Yi = 0, 1, 2, ... and λi , ν > 0, where

Z (λi , ν) =
∞∑
k=0

λki
(k!)ν

Then
Yi |λi , ν ∼ CMP(λi , ν)

is Conway-Maxwell (COM) Poisson random variable
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Properties

The dispersion parameter ν allows the traditional Poisson assumption
of equi-dispersion to be relaxed

When ν = 1

Z (λi , ν) =
∑∞

k=0
λk
i

(k!)ν =
∑∞

k=0
λk
i

k! = eλi ← Power series

Implies Yi |λi , ν = 1 ∼ Poisson(λi )

E [Y ] ≈ λ1/ν − ν−1
2ν

Approximation accurate if ν ≤ 1 (over-dispersion) or λ > 10ν (large
counts)
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COM Poisson regression

Again we assume the same relationship as the previous methods:

log(λi ) = β0 + β1xi1 + ...+ βpxip = Xiβ

Can optionally model ν in a similar way if it’s suspected that different
groups have different dispersion

Very cool feature!

Use maximum likelihood estimation to find parameter estimates

Likelihood-ratio (LR) test available to test for equidispersion

H0 : ν = 1 HA : ν 6= 1
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Simulation #2

How well can the test for ν detect over/under dispersion?

We can examine its statistical power with simulation

Power = P(Reject H0|ν 6= 1)

We’ll ‘reject’ the null hypothesis if the p-value < 0.05
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Simulation #2: Set-up

Define
log(λi ) = β0 + 0.01Xi1 + 0.125Xi2 + 0.20Xi3

where

Xi1 ∼ Uniform(0, 1) Xi2 ∼ N(0, 0.5) Xi3 ∼ Binomial(1, 0.5)

β0 = {0, 1.33, 2.67} ← Shifts magnitude of counts

N = {10, 25, 50, 100, 250} ← Sample size

ν = {.25, .50, ..., 1.75, 2.0} ← Dispersion
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Simulation #2: Process

Repeat the following for all combinations of β0, N, and ν:

1 Randomly generate X1, X2, and X3 of size N from their respective
distributions

2 Calculate λi for all N observations using the defined linear predictor
3 Randomly generate COM Poisson realizations for each λi with ν

This is the response variable Y

4 Fit COM Poisson regression model on Y using X1, X2, and X3

5 Compute p-value for equidispersion test, and indicate if < 0.05

6 Repeat 1-5 for S = 1000 samples

7 Calculate the proportion of tests that were rejected
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Simulation #2: Results
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Figure 7: True dispersion, ν, vs. power of likelihood ratio test by sample size
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Observations from Simulation # 2

In general, increased sample size increases power, and accuracy of
Type I error

Power decreases as the data becomes more equidispersed

When n is small, appears to be able to detect underdispersion (ν > 1)
with more power than overdispersion (ν < 1) and vice-versa when n is
larger

More power as the magnitude of the counts increase
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COM Poisson regression (toy) example

https://archive.ics.uci.edu/ml/datasets/Challenger+USA+Space+Shuttle+O-

Ring

Note: The original data was bootstrapped for 500 samples for demonstration purposes

Interested in modeling the number of O-rings that will experience
thermal distress for a flight given the launch temperature
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Figure 8: Launch temperature vs. number of O-rings experiencing thermal distress
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COM Poisson regression: R code

> #Load package for COM Poisson regression

> library(COMPoissonReg)

> #Fit COM Poisson model

> mod_cmp <- glm.cmp(‘Thermal distress‘ ~ ‘Launch temperature‘,

data = oring)

> summary(mod_cmp)$DF

Estimate SE z.value p.value

X:‘Launch temperature‘ -0.1405 0.0147 -9.5358 1.487e-21

Launch temperature appears to be associated with the number of O-rings
experiencing thermal distress

Testing hypothesis of equidispersion

> equitest(mod_cmp)$pvalue

[1] 0.0003879015 #Reject the null hypothesis
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COM Poisson regression: R code

Did the likelihood ratio test identify over or under dispersion?

95% confidence interval for ν: (1.41, 2.67) ← under

Comparing fit with Poisson regression

> mod_p <- glm(‘Thermal distress‘ ~ ‘Launch temperature‘,

data = oring, family = ’poisson’)

> data.frame("AIC_CMP" = AIC(mod_cmp), "AIC_P" = AIC(mod_p))

AIC_CMP AIC_P

679.5021 690.0916

Even with additional complexity of accounting for the dispersion, AIC shows
a better fit for the CMP model
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Limitations of COM Poisson regression

R package: COMPoissonReg

Doesn’t appear to optimized for robust performance

Often runs into convergence issues when estimating parameters;
sensitive to nuances in datasets

Takes a long time to run as sample sizes get large

Interpretation/prediction

Model coefficients do not have ‘nice’ interpretation

Distribution average is messy. Either need to use approximation
(metioned above), or use median of conditional distribution for count
predictions.

Nevertheless, the methodology itself is sound!
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Additional models for count data

Zero-inflated Poisson regression

When a distribution has an excessive number of zeros than what would
arise in a standard Poisson distribution

Zero-inflated COM Poisson regression

Same as above, but also accounts for over/under dispersion
simultaneously

Quasi-Poisson models

Can adjust standard errors for more accurate inference when
over/under dispersion is present
Doesn’t have properties of the standard generalized linear models
(linear, logistic, poisson, etc.) because it doesn’t use the full likelihood
to get estimates. This doesn’t allow model comparisons with likelihood
measures like AIC.
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Questions?
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