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Introduction

Plus-Minus

For the it" player in the NHL,

N;
PM,‘ = Z X,'j
Jj=1

where
N; = # of goals player / is on the ice for

and

1 if player i is on the ice for his team’s goal

—1 if player i is on the ice for opponent’s goal
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Introduction

Introduction

Goal: Develop metric to evaluate individual player performance

@ Traditional measure is the plus-minus value

e Most popular metric; easy to calculate and understand

o Depends heavily on teammate and opponent ability (marginal
effect)

e No control for sample size

@ Other metrics have been proposed to take into account team
effect, hits, faceoffs, etc. (adj. plus-minus, Corsi)

@ Proposed a logistic regression model to estimate partial effects
for players
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Introduction

Preliminary modeling framework

Let
g; = probability that a given goal / was scored by the home team

then

Iog(]_ ilqi> =aj+ By + o+ Bhg — Bapg — - — Bage (1)
where B = (31, ..., Bn,) is the vector of partial plus-minus effects
for all np, players in the analysis, and {hj1...hjs},{ai1...ai6} are the
indices of 3 corresponding to home and away players on the ice for
goal 7, respectively. «; may depend upon additional information
such as team effect.
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Data and Model

@ Player and goalie data for every even strength regular season
goal from 2007-2011 seasons
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Data and Model

@ Player and goalie data for every even strength regular season
goal from 2007-2011 seasons

@ There were n, = 1467 players involved in ng = 18154 goals
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Data and Model |

an Approach and Prior Regularization

@ Player and goalie data for every even strength regular season
goal from 2007-2011 seasons

@ There were n, = 1467 players involved in ng = 18154 goals

@ Player effect is treated as constant over the range of the
seasons considered
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@ Over 99% sparsity in the design matrix

@ Highly imbalanced; only 27000 of the over 1 million possible
player pairs are observed for a goal
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Logistic Likelihood Model

A more specific reformulation of equation (1) is
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Logistic Likelihood Model

A more specific reformulation of equation (1) is

ai

— | =2ra+zp3 2
) ~ahatap )

log

where ac is the 30 x 1 vector of team effects, and 3 is the n, x 1
vector of player effects.
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Logistic Likelihood Model

A more specific reformulation of equation (1) is

ai

— | =2ra+zp3 2
) ~ahatap )

log

where ac is the 30 x 1 vector of team effects, and 3 is the n, x 1
vector of player effects.

@ Again, the « vector can be extended to incorporate effects of
different game situations
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Data and Model

Bayesian approach and prior regularization

@ Impose shrinkage on estimated coefficients by putting a
zero-centered prior distribution on the parameters

e Use maximum a posteriori (MAP) estimates of the unknown
parameters

@ Regularization is needed to protect against overfitting and
stability of estimates
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Bayesian Approach and Prior Regularization

Bayesian approach and prior regularization

@ Impose shrinkage on estimated coefficients by putting a
zero-centered prior distribution on the parameters

e Use maximum a posteriori (MAP) estimates of the unknown
parameters

@ Regularization is needed to protect against overfitting and
stability of estimates

@ Allows the model to “pick out” the most influential players by
shrinking unimportant parameters toward zero
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Bayesian approach and prior regularization

The following is the joint prior distribution used for « and 3:
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Data and Model

Bayesian approach and prior regularization

The following is the joint prior distribution used for « and 3:

30 np
w(o8) = [[ Maclo.o}) [ Laptace(8y)  (3)

i=1 j=1
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Bayesian approach and prior regularization

The following is the joint prior distribution used for « and 3:

30 np
r(c.B) = [[ Naelo,o?) [[ Laplace(B1)  (3)

i=1 j=1

Under certain settings, with MAP estimation...
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The following is the joint prior distribution used for « and 3:
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i=1 j=1
Under certain settings, with MAP estimation...

@ a Normal prior is equivalent to L2 regularized regression
(Ridge)
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Bayesian Approach and Prior Regularization

Bayesian approach and prior regularization

The following is the joint prior distribution used for « and 3:

30 np
r(e.8) = [ Mael0.o?) [ ] Laplace(53)  (3)
i=1 Jj=1

Under certain settings, with MAP estimation...
@ a Normal prior is equivalent to L2 regularized regression
(Ridge)
@ a Laplace prior is equivalent to L1 regularized regression

(LASSO)
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Bayesian Approach and Prior Regularization

A simple explanation

Let 7(B|\) = %e_TAW and f(y|B,0?) = \/%e%l(y_m/mQ, then the
MARP estimates are the maximum of the posterior distribution:
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MARP estimates are the maximum of the posterior distribution:

P n
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A simple explanation

Let 7(B|\) = %e_TAW and f(y|B,0?) = \/%e%l(y_m/mQ, then the
MARP estimates are the maximum of the posterior distribution:

fBly) o [T~ ] F0ilB,0%)

j=1 i=1
—A -1
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Data and Model

A simple explanation

Let 7(B]2) = 3e= 17l and £(y|8,02) = A-e= "' then the
MAP estlmates are the maximum of the posterior distribution:

f(Bly) o [[~BIN]]FilB.0?)

j=1 i=1
Y _
x e2 Zf—l |5j|e71 Sa(vi—aiB)?

((Bly) o Zw, Z (vi — zB)?

i:l
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and Prior Regularization

A simple explanation

Let 7(B|\) = e =161 and f(y|B,0%) = \/%e%l(y_m/mQ, then the
MAP estlmates are the maximum of the posterior distribution:

f(Bly) o [[~BIN]]FilB.0?)

j=1 i=1
x e 2 Zf 1 |5J|e 21 Z (}/I'*ml'ﬁ)2
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i=1 j=1

Robert B. Gramacy, Shane T. Jensen, Matt Taddy Estimating Player Contribution in Hockey with Regularized Logis



Data and Model c Likelihood Model

Bayesian Approach and Prior Regularization
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@ 0; and ); dictate the amount of penalization imposed on
estimates
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estimates
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Data and Model ¢ Likelihood Model

Bayesian Approach and Prior Regularization

Bayesian approach and prior regularization

@ 0; and ); dictate the amount of penalization imposed on
estimates

@ Prior standard deviations for team-effects were set at oy = 1

@ Independent conjugate gamma hyperpriors were used for the
scale parameters \;

o E[);] = 15 smallest penalty manageable while eliminating large
non-zero f3; for players with little ice time
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Two models considered using MAP estimation:
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Point Estimation of Player Contribution

Point Estimation of Player Contribution

Two models considered using MAP estimation:
e Full team-player model as described in (2) and (3)

@ Player-only model where &’ is replaced by a common «
1
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Figure 2: Comparing main effects for players in the team-augmented model (dots), to the player-only
model. The lines point to the unconditional (player-only) estimates. The coefficients have been ordered by
the dots. Players discussed in the text have their names colored in red. Players with coefficients estimated
as zero under both models are not shown.
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contributions drop after accounting for their teams (all
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e Dwayne Roloson (goaltender) is a star on bad teams

@ Craig Adams has the worst contribution, and is an even worse
performer after accounting for his team

@ Pavel Datsyuk is the best player by far according to this model
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Point Estimation of Player Contribution

Findings:
@ Incorporating team effect causes more player effects to be
zeroed out

@ Sidney Crosby, Jonathan Toews’, and Zdeno Chara’s
contributions drop after accounting for their teams (all
captains)

e Dwayne Roloson (goaltender) is a star on bad teams

@ Craig Adams has the worst contribution, and is an even worse
performer after accounting for his team

@ Pavel Datsyuk is the best player by far according to this model

e Posterior odds of contributing to a goal for his team are nearly
50% larger than the next best player
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Comparison to traditional plus-minus

o Far fewer players are distinguishable from their team-average
under the MAP estimation

Robert B. Gramacy, Shane T. Jensen, Matt Taddy Estimating Player Contribution in Hockey with Regularized Logis



Comparison to traditional plus-minus

Point Estimation of Player Contribution
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o Far fewer players are distinguishable from their team-average
under the MAP estimation

@ Ability to check for statistical significance

Robert B. Gramacy, Shane T. Jensen, Matt Taddy Estimating Player Contribution in Hockey with Regularized Logis



Point Estimation of Player Contribution

Comparison to traditional plus-minus

o Far fewer players are distinguishable from their team-average
under the MAP estimation

@ Ability to check for statistical significance

@ Measures partial effect of a player on his respective team
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Point Estimation of Player Contribution

Comparison to traditional plus-minus

o Far fewer players are distinguishable from their team-average
under the MAP estimation

@ Ability to check for statistical significance
@ Measures partial effect of a player on his respective team

o Players on good team need to be even better to get a positive
[ while average players on the same team may get good
plus-minus
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Comparison to traditional plus-minus

players.
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Figure 3: Left: Cun}par'mg plus-minus, aggregated over the four seasons considered in our analysis, to the
MAP partial effects 3. Plot symbols give positional information: C = center, L = left wing, R = right wing,
D = defense, and G = goalie. Right: Comparing team partial effects & to their plus-minus values.
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Figure 3: Left: Cun}par'mg plus-minus, aggregated over the four seasons considered in our analysis, to the
MAP partial effects 3. Plot symbols give positional information: C = center, L = left wing, R = right wing,
D = defense, and G = goalie. Right: Comparing team partial effects & to their plus-minus values.

@ Dwayne Roloson was on T.B., NYI, EDM, and MIN
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Figure 3: Left: Cun}par'mg plus-minus, aggregated over the four seasons considered in our analysis, to the
MAP partial effects 3. Plot symbols give positional information: C = center, L = left wing, R = right wing,
D = defense, and G = goalie. Right: Comparing team partial effects & to their plus-minus values.

@ Dwayne Roloson was on T.B., NYI, EDM, and MIN

@ This model attributes goals counting against him in his plus-minus to the teams
he was on
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Figure 4: Coefficient estimates for a subset of players (chosen from all players with nonzero coefficients at
E[A;] = 15, our specification in Sections 3.1-2). The expected L1 penalty is shown along the bottom, with
corresponding % of estimated 3; # 0 along the top and coefficient value on the right.
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Comparison to traditional plus-minus
Prior sensitivity analysis
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Figure 4: Coefficient estimates for a subset of players (chosen from all players with nonzero coefficients at
E[A;] = 15, our specification in Sections 3.1-2). The expected L1 penalty is shown along the bottom, with
corresponding % of estimated 3; # 0 along the top and coefficient value on the right.

@ Averaging over penalty uncertainty will help eliminate sensitivity
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Point Estimation of Player Contribution
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=
o . 27 ==
g 4
&
2
&
- z E_
5
I g
= 3
2 E B4
I —
2
o i
T T T T r T T T T 1
20406 4e=08 Ba+0B Be+06 Op+00 20408 408 Ges06  Bes08  1e=07
2010-11 salary (USD) salary

Figure 5: The left plot shows non-zero MAP ﬂ estimates versus 2010-11 salary, augmented with rescaled
plus-minus points for comparison. Ordinary least squares fits are added to aid in visualization. The right
plot shows the histogram of 2010-11 salaries for players with 3; = 0, extending to the full set in gray.
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@ Smaller standard error for slope of MAP estimates with salary
indicates tighter relationship
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@ Smaller standard error for slope of MAP estimates with salary
indicates tighter relationship

@ Slope is lesser with MAP estimates
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@ Smaller standard error for slope of MAP estimates with salary
indicates tighter relationship

@ Slope is lesser with MAP estimates

@ Pavel Datsyuk needed a raise whereas Sidney Crosby may be
overpriced
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@ Smaller standard error for slope of MAP estimates with salary
indicates tighter relationship

@ Slope is lesser with MAP estimates

@ Pavel Datsyuk needed a raise whereas Sidney Crosby may be
overpriced
@ Relatively large proportion of high-paid players with 3; =0
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Point Estimation of Player Contribution
Value for money

Value for money

@ Smaller standard error for slope of MAP estimates with salary
indicates tighter relationship

@ Slope is lesser with MAP estimates
@ Pavel Datsyuk needed a raise whereas Sidney Crosby may be
overpriced
@ Relatively large proportion of high-paid players with 3; =0
e Evgeni Malkin ($10M), Vincent Lecavalier ($10M), Duncan
Keith ($9M)
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Additional analyses

@ Posterior analyses of team-player Model
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Additional analyses

@ Posterior analyses of team-player Model

@ Posterior player match-ups and line optimization
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Additional Analyses

Additional analyses

@ Posterior analyses of team-player Model
@ Posterior player match-ups and line optimization

@ Extension to player-player interactions
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Additional Analyses

Additional analyses

@ Posterior analyses of team-player Model
@ Posterior player match-ups and line optimization
@ Extension to player-player interactions

@ Appendix with estimation details and software used to carry
out this analysis
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Additional analyses
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Figure 6: Comparing the ability of Datsyuk (black), Roloson (red), and Marchant (green) to the 90-odd
other players with non-zero coefficients in either the team—player or player-only models. These three players
are also indicated in red among the list of players on the X-axis. Thicker lines correspond to the team—player
model.
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Figure T: Posterior probability that “offense” scores in various line matchups (smoothed using a kernel
density). Better team (listed first) is always considered to be the offense.
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Figure 8: The left panel shows kernel density plots of the probability that an optimally chosen line scores
against a random line according to the full posterior distribution of 4 and under several salary caps; the
right panel shows the means and 90% predictive intervals of the same posterior as a function of those caps.
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