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1 Introduction

The home price index (HPI), recorded by the Federal Housing Finance Agency (FHFA), is a measure which
quantifies the movement of single-family detached home prices by determining the average price changes
in repeat sales or refinancing of the same properties. The FHFA provides an in-depth description of the
methodology used in obtaining these data, which can be accessed on their website [1]. Using data from the
1st quarter of 1991 through the 2nd quarter of 2016, it was of interest to explore the similarities and differences
of HPI for the Midwestern region of the U.S with the national average. Specifically, the average HPI of the
four Midwestern states: Illinois, Iowa, Minnesota, and Wisconsin, as well as Wisconsin’s individual HPI, will
be examined over the time period. Using this data, the ‘best’ model for each region will be obtained by a
selection criterion to determine if the series’ are all generated by the same type of process. Then, with the
optimal model, HPI forecasts will be made for 2016-2019, which will be compared and contrasted.

2 Data exploration

Figure 1 displays the time series for the national, Midwest, and Wisconsin HPI. Each series has the same
pattern overall by (linearly) increasing from 1991 through roughly 2005, and then a large spike from 2005-
2010 followed by a downfall. This phenomenon can likely be explained by the US housing bubble that peaked
in the mid-2000’s followed by the 2008 housing crisis where there was a large decline in home prices leading
to mortgage delinquencies [2].
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Figure 1: Original quarterly HPI for each of the three regions
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Figure 1 also shows that the effect of the price peak in the mid-2000’s was much greater on the eastern
and western parts of the country than the Midwest. This is shown by the similarity of HPI in all three series
from 1991-2005, and then a large increase for the US average relative to the other two. The decline, though,
seems to be similar across the three series.

3 Obtaining stationarity

In order to choose models for this data, a weakly stationary process must first be obtained. Among other
conditions, the mean, variance and autocorrelation at a particular time point must not depend on that time.
Figure 1 clearly shows an increase in HPI with time, implying E[Nt], E[Mt], and E[Wt] depend on time
where Nt,Mt, and Wt are the HPI for national average, Midwest, and Wisconsin, respectively, at time t.
Notice that the series’ are relatively flat from 1991-2008. After that, all three series appear to become much
more variable. This observation also calls into question the homogeneity of the variance in a particular series.
Each of these problems will be considered in the proceeding sections.

3.1 Variance stabilization

One possibility to stabilize the variability in a process is to use the Box-Cox transformation procedure, which
is defined in the following:

y∗ =

{
yλ−1
λ if λ 6= 0

log(y) if λ = 0

The BoxCox.ar function in the TSA package from R was used to get a 95% confidence interval for the
transformation parameter, λ, for each series. Figure 2 shows the point estimates of λ along with the intervals.
Since all values in the interval are plausible, ‘nice’ values for λ that were contained in the interval were chosen.
Namely, the transformed series’ are as follows:

N∗
t = 1−N−1

t M∗
t =

1−M−1.5
t

1.5
W ∗
t =

1−W−0.5
t

0.5
We will reference these transformed series’ collectively as Y ∗

t .
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Figure 2: From left to right, the likelihood for a Box-Cox variance stabilizing parameter are shown for the national,

Midwest, and Wisconsin series’, respectively.

Figure 3 shows each series after its respective transformation. The variance appears to have been stabilized
for later time points relative to the earlier ones.

2



Midwest

National

Wisconsin

0.6663

0.6664

0.6665

0.994

0.995

0.996

0.997

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1990 2000 2010

1990 2000 2010

1990 2000 2010

Year

T
ra

n
s
fo

rm
e

d
 H

P
I

Figure 3: Quarterly HPI for each region after using the Box-Cox transformation.

3.2 Augmented Dickey-Fuller test

Let et be a stationary process. Then for a given series, Yt, the Augmented Dickey-Fuller (ADF) test has the
following form:

Suppose Yt = αYt−1 + et, then

Ho : α = 1 HA : |α| < 1 (stationary)

Therefore, if Ho is not rejected, the test concludes that taking the first difference, ∇Yt = Yt − Yt−1, is
necessary to obtain stationarity. It does not, however, guarantee it. The test can be run again on ∇Yt to
check whether a second difference is to be taken, denoted as ∇2Yt = ∇Yt − ∇Yt−1. Table 1 displays the
p-values for the ADF test on the transformed series’, Y ∗

t , as well as the first and second differences.

Series Y ∗
t ∇Y ∗

t ∇2Y ∗
t

National 0.5237 0.6559 < 0.01
Midwest 0.4488 0.7507 < 0.01

Wisconsin 0.5581 0.6327 < 0.01

Table 1: P-values from the Augmented Dickey-Fuller for the transformed data, first difference, and second

difference, respectively, for each series.

Figure 4 displays the resulting time series plots after taking the first and second differences. In all three
series, the second difference was necessary to achieve stationary processes. Therefore, the final stationary
processes for the national, Midwest, and Wisconsin series are ∇2N∗

t ,∇2M∗
t ,∇2W ∗

t , respectively.
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Figure 4: Plots for each of the three series after taking the first difference (top), and the second difference (bottom)

4 Pooling potential models

Now that (approximate) stationarity has been obtained, strategies to gather potential models for the data
will be considered. By understanding the theoretical behavior of various model specifications, visualizations
and summaries of the data can be examined to gain insight on what process may truly be generating the
data. Since a goal of this analysis is to determine similarities and differences in the ‘best’ model chosen for
each series, all potential models will be pooled collectively, and considered in the selection. Therefore, it will
be possible for the chosen model for a given series to not have been suggested from the plotting evidence.

4.1 Autocorrelation

For a given lag, k, the autocorrelation (ACF) is the correlation between a process at time t, Yt, and Yt−k.
Theoretical derivations show that moving average models, denoted MA(q), have significant autocorrelation
through lag − q, and then zero beyond. Autoregressive models, denoted AR(p), have exponentially decaying
autocorrelation when p = 1, and decaying cyclical behavior when p = 2. Keeping these ideas in mind
while examining the plots give strategy to selecting reasonable models for the data. Figure 5 displays the
autocorrelation plots for each series.
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Figure 5: Autocorrelation for each (stationary) series after differencing twice.

Each of the plots have significant autocorrelation at lag − 2, as well as lag − 4. There also appears to
be cyclical behavior in the plots, suggesting AR(2) as a possibility. Therefore, MA(2),MA(3),MA(4), and
AR(2) will be considered.

4.2 Partial-autocorrelation

It may be of interest to understand dependencies of lags after accounting for those in between. This would
allow the compounding effect of additional lags on correlation to be marginalized, giving a more direct
indication of the relationship between observations at various time differences. The partial-autocorrelation
(PACF) does this. Again, by theoretical derivations, it is known that the PACF is zero after the true order
of an AR(p) model, and that there tends to be a gradual decay of the PACF for MA(q) models. Using the
same approach, this can be used as insight into the model pooling.
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Figure 6: Partial-autocorrelation for each (stationary) series after differencing twice.
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Figure 6 displays the PACF for each of the three series’. By examination, AR(2), AR(3), and AR(5) will
be considered as possible models.

4.3 Other tools

There are other useful ways to gather potential models for a time series. Figure 7 displays a result of the
armasubsets function in R, which determines well-suited models for the data by using a selection criterion
on various subsets of parameters. This is especially useful to examine importance of seasonal effects when
everything in between is not necessary to be accounted for. The extended autocorrelation plot (EACF) is a
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Figure 7: Plots produced by armasubsets suggesting potential models for each series according to the BIC criterion.

way to obtain models that combine AR(p) and MA(q), known as ARMA(p, q). The appendix contains the
tables produced by the eacf function in R.

5 Determination of final model

The final pool of models for the three differenced series that were gathered in Section 4 are:

AR(2) AR(3) AR(5) MA(3) MA(4) ARMA(2, 3) ARMA(2, 6) ARMA(9, 1)

There are various methods and criterion to use to make a decision on the optimal model from the pool.
In the proceeding subsection, the corrected Akaike’s information criterion will be considered.

5.1 Best model by AICc

The traditional AIC statistic is a broadly used, and relatively effective, model selection criterion that penal-
izes models for having too many parameters. Therefore, the goal with any criterion is to have the optimal
balance between goodness-of-fit, and parsimony. One issue with AIC is that it uses an asymptotic assump-
tion, meaning it assumes the sample size is extremely large. It is fairly robust for moderately sized samples,
but if n is small, it becomes very misleading. The AICc is a correction to the AIC in that it relieves the
large-sample assumption, making it much more appealing for smaller data. It can be defined as follows:
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If L(θ̂|data) is the data likelihood evaluated at the optimizer, n is the sample size, and our model is of
the form ARMA(p, q), then

AICc = −2log(L(θ̂|data)) +
2n(p+ q + 1)

n− 2− (p+ q)

The goal would then be to choose the model with the smallest AICc. Table 2 displays the AICc of the three
series’ for each potential model determined from Section 4.

Series AR(2) AR(3) AR(5) MA(3) MA(4) ARMA(2,3) ARMA(2,6) ARMA(9,1)
National -1826.012 -1824.055 -1821.335 -1820.946 -1822.218 -1826.98 -1824.153 -1824.934
Midwest -2362.055 -2370.101 -2373.637 -2363.714 -2372.163 -2367.418 -2368.114 -2373.077
Wisconsin -1221.921 -1232.339 -1230.323 -1228.139 -1228.611 -1228.54 -1227.224 -1232.435

Table 2: Corrected AIC values for potential models of each series. Bolded values are within two of minimum of the

corresponding row.

For each row in Table 2, the minimum AICc is bolded along with measures within 2 of it. As a general
rule, model criterion within 2 of the minimum value should also be considered [3]. Now that the pool of
models is significantly narrowed, the predictive ability will be explored to choose the final one.

5.2 Predictive ability with MAD

Since one of the goals of this project is to forecast the HPI for each of three series, it is of interest to determine
the predictive ability of the potential models. By holding out the last 5 observations in the series, we can
look at the mean absolute difference (MAD) which will be defined as

MAD =

∑n
i=1 |∇2Y ∗

t − ∇̂2Y ∗
t |

n

where ∇̂2Y ∗
t is the predicted value of the second difference. The model that minimizes this quantity will be

chosen for each series. Table 3 displays the MAD of each model. Note that these were multiplied by 10000
due to extremely small values.

National MAD Midwest MAD Wisconsin MAD
AR(2) 0.125 AR(5) 0.00994 AR(3) 2.072
ARMA(2,3) 0.142 ARMA(9,1) 0.00987 ARMA(9,1) 4.080

Table 3: Mean absolute difference of the last 5 observations (× 10000) for the best two models according to AICc

for each series.

Based on these calculations, the following models will be used:

∇2N∗
t ∼ AR(2) ∇2M∗

t ∼ ARMA(9, 1) w/ φ2, φ9, θ1 6= 0 ∇2W ∗
t ∼ AR(3)

5.3 Residual diagnostics

Before proceeding to fit the model to the original data, the residuals will be examined to verify that model
assumptions are met for those chosen in section 5.2. Our hope is that the models chosen have accounted
for all significant correlation structures, leaving the residuals to be independent, and normally distributed.
To make the assessment, we will look at quantile-quantile plots, residual density plots, autocorrelation and
partial-autocorrelation plots, and perform the Ljung-Box test. All diagnostics will be done on the standardized
residuals. Figure 8 displays the quantile-quantile plot for each series.
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Figure 8: Quantile-quantile plots of the standardized residuals for the final model chosen on each series.

Here, the standardized residuals are plotted against their theoretical normal quantiles. Therefore, if the
points stray far from the line on the plot, there will be evidence of a violation of the normality assumption. In
all three plots, the residuals appear to fit the theoretical quantiles very well, with a slightly heavy upper-tail in
the Wisconsin series. This is apparent in Figure 9, which displays the empirical densities of the standardized
residuals.
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Figure 9: Density plots of the standardized residuals for the final model chosen on each series. A flexible bandwidth

was chosen to ensure an accurate check for normality.

8



A relatively small bandwidth was chosen to see the detail of the distribution of residuals, which makes
for a very ‘choppy’ distribution. Nevertheless, the overall shape of a normal distribution is present, and does
not appear to suggest otherwise. The Shapiro-Wilk test is a possibility to formally test for normality, but it
is very sensitive to outliers. The p-values from this test were .598, .585, and .020 for the national, Midwest,
and Wisconsin series, respectively. Although the test says otherwise for Wisconsin, we will assume normality
holds.

Figure 10 displays the time plots of the residuals, autocorrelation, and p-values for the Ljung-Box test
for each series. To confirm that randomness is present, the runs test can be performed, which the p-values
were 0.918, 0.840, and 0.652 for the three series, respectively. This indicates no dependency of residuals on
previous observations.

Midwest National Wisconsin

Time

S
ta

n
d

a
rd

iz
e

d
 R

e
s
id

u
a

ls

0 20 40 60 80 100

-3
-1

1

5 10 15 20

-0
.2

0
.0

0
.2

Lag

A
C

F
 o

f 
R

e
s
id

u
a

ls

5 10 15 20

0
.0

0
.4

0
.8

Number of lags

P
-v

a
lu

e
s

Time

S
ta

n
d

a
rd

iz
e

d
 R

e
s
id

u
a

ls

0 20 40 60 80 100
-3

-1
1

5 10 15 20

-0
.2

0
.0

0
.2

Lag

A
C

F
 o

f 
R

e
s
id

u
a

ls

5 10 15 20

0
.0

0
.4

0
.8

Number of lags

P
-v

a
lu

e
s

Time

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

0 20 40 60 80 100

−
3

−
1

1

5 10 15 20

−
0.

2
0.

0
0.

2

Lag

A
C

F
 o

f R
es

id
ua

ls

5 10 15 20

0.
0

0.
4

0.
8

Number of lags

P
−

va
lu

es

Figure 10: Model diagnostic plots produced by tsdiag for each series containing a time plot and autocorrelation

plot for the standardized residuals, as well as the Ljung-Box test for a number of lags.

The autocorrelation plots in Figure 10, and the partial-autocorrelation plots in Figure 11 can also be
examined. In all models, there does not appear to be any significant autocorrelation for either type.
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Figure 11: Partial-autocorrelation plots of standardized residuals for the final model chosen on each series.
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The final diagnostic to perform is the Ljung-Box test. The hypotheses for the test are as follows:

H0 : ρ1 = ρ2 = ... = ρk = 0 HA : At least one ρi 6= 0

where ρi is the autocorrelation at lag-i. The bottom-most plot in Figure 10 displays the p-values for this test
for k = 8, ..., 20 (k = 8 is the minimum out of the three) for each model. The red line is the 0.05 threshold to
reject the null hypothesis. In all cases, there is not evidence to suggest that any ρi is non-zero for any model.

6 Forecasting HPI

The following models have been determined for the power-transformed data, in which the arima function
was used to fit the models:

N∗
t ∼ ARIMA(2, 2, 0) M∗

t ∼ ARIMA(9, 2, 1) w/ φ2, φ9, θ1 6= 0 W ∗
t ∼ ARIMA(3, 2, 0)

In order to obtain forecasts, the defined transformations in Section 3 were inverted. Figure 12 displays
each of the original series with forecasts for the 2nd quarter of 2016 through the 2nd quarter of 2019. Attached
to the forecasts are 95% prediction intervals. These are also displayed in Figure 13, which is a zoomed plot
on the forecasted HPI. Note that because the forecasts are not invariant to transformations, the confidence
bounds are approximate.
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Figure 12: HPI forecasts with approximate 95% prediction intervals for 2016-Q2 through 2019-Q2.
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Figure 13: Zoomed plot of the 3-year forecast to assess predictions.

As expected, the margin of error significantly increased as forecasts were made farther out in all models.
The margin of error for the national series, in particular, increased at a larger rate than the Midwest and
Wisconsin series. The forecasts of the latter two were merely identical. Table 4 displays the point estimates of
HPI at each time point, where an asterisk indicates non-overlapping prediction intervals between the national
series and the other two.

Year Quarter Midwest National Wisconsin

2016 3 323.20 386.23∗ 323.23
4 325.36 390.09∗ 325.78

2017 1 328.66 395.28∗ 329.03
2 333.20 401.23∗ 333.30
3 336.73 406.37∗ 337.07
4 339.92 411.63 340.35

2018 1 344.13 417.63 344.05
2 348.88 423.59 348.16
3 352.56 429.44 352.09
4 356.32 435.69 355.87

2019 1 361.21 442.21 359.89
2 366.10 448.76 364.11

Table 4: HPI forecasts for the following 3 years for each region. The asterisk(*) indicates non-overlapping
95% prediction intervals for the National series with both the Midwest and Wisconsin series’. Note that all

estimates for the latter two are very similar, with almost identical prediction intervals.

As noted, each HPI forecast for the Midwest and Wisconsin series’ are within 1 of each other, and the
national series forecasts are consistently larger by a margin around 70.
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7 Conclusion

The objective of this project was to individually model the Home Price Index for Wisconsin and the Midwest,
and compare these with the national average. Specifically, it was of interest to determine if the same model
could be used (with different parameter estimates). According to the AICc and the MAD, none of the three
models chose the same one to be optimal, though it was very close.

The similarity of the forecasts of HPI for Wisconsin and the Midwest provide evidence that housing prices
among the states of Iowa, Illinois, Minnesota, and Wisconsin are similar, and change in a similar pattern.
The national average HPI is fairly larger than the Midwest, which is expected since housing is known to be
more expensive in larger cities on the east and west coasts. Another interesting observation is that after the
peak and recession in the 2000’s, the price index has just recently returned to the original, steady rate of
increase that it had from 1991-2005, though there is much more separation between the Midwest and the
rest of the country.
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Appendix

#Applied Time Series Project

#Comparison of the Home Price Index of WI to Midwest to USA

#Spring 2017, Osnat Stramer

#Author: Alex Zajichek

setwd("~/Documents/School/Iowa-M.S. Statistics/Spring 2017/Applied Time Series/Project")

#Plotting all 3 series together

load(file = "natl_HPI.Rda", verbose = T)

load(file = "midwst_HPI.Rda", verbose = T)

load(file = "WI_HPI.Rda", verbose = T)

all_series <- data.frame("Type" = c(rep("National", 102), rep("Midwest", 102), rep("Wisconsin", 102)),

"Year" = rep(natl_HPI$Year, 3), "HPI" = c(natl_HPI$Index_NSA, midwst_HPI$HPI, WI_HPI$index_nsa))

library(ggplot2)

ggplot(all_series) + geom_line(aes(x = Year, y = HPI, colour = Type))

library(TSA)

#Step 1: Variance Stabilizing Tranformations

par(mfrow = c(1,3))

BC1 <- BoxCox.ar(natl_HPI$Index_NSA, method = ’ols’, lambda = seq(-3,3,.01))

BC2 <- BoxCox.ar(midwst_HPI$HPI, method = ’ols’, lambda = seq(-3,3,.01))

BC3 <- BoxCox.ar(WI_HPI$index_nsa, method = ’ols’, lambda = seq(-3,3,.01))

BC1$mle #-0.9

BC1$ci #-1.45 -0.34 <-- use -1.0

BC2$mle #-1.79

BC2$ci #-2.36 -1.20 <-- use -1.5

BC3$mle #-0.56
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BC3$ci #-1.14 0.03 <-- use -0.5

#Step 2: Obtain stationary series

national <- (natl_HPI$Index_NSA^-1 - 1)/(-1)

midwest <- (midwst_HPI$HPI^(-1.5) - 1)/(-1.5)

wisc <- (WI_HPI$index_nsa^(-0.5) - 1)/(-0.5)

transed <- data.frame("Type" = c(rep("National", 102), rep("Midwest", 102), rep("Wisconsin", 102)),

"Year" = rep(natl_HPI$Year, 3), "HPI" = c(national, midwest, wisc))

ggplot(transed) + geom_line(aes(x = Year, y = HPI, colour = Type)) +

facet_wrap(~Type, scales = "free", nrow=3) + ylab("Transformed HPI") + theme(legend.position="none")

#Linear trend does not seem to hold, difference will be taken

adf.test(national) #pvalue for Y_t: 0.5237

adf.test(midwest) #pvalue for Y_t: 0.4488

adf.test(wisc) #pvalue for Y_t: 0.5581

library(TSA)

#First difference

nat_diff <- diff(national);

adf.test(nat_diff) #0.6559

mid_diff <- diff(midwest);

adf.test(mid_diff) #.7507

WI_diff <- diff(wisc);

adf.test(WI_diff) #0.6327

#Second difference

nat_diff2 <- diff(nat_diff);

adf.test(nat_diff2) #<0.01

mid_diff2 <- diff(mid_diff);

adf.test(mid_diff2) #<0.01

WI_diff2 <- diff(WI_diff);

adf.test(WI_diff2) #<0.01

library(ggplot2)

transed <- data.frame("Type" = c(rep("National", 101), rep("Midwest", 101), rep("Wisconsin", 101)),

"Year" = rep(natl_HPI$Year[-1], 3), "HPI" = c(nat_diff, mid_diff, WI_diff))

p1 <- ggplot(transed) + geom_line(aes(x = Year, y = HPI, colour = Type)) +

facet_wrap(~Type, scales = "free", ncol=3) + ylab("First Difference") +

theme(legend.position="none")

transed2 <- data.frame("Type" = c(rep("National", 100), rep("Midwest", 100),

rep("Wisconsin", 100)), "Year" = rep(natl_HPI$Year[-c(1,2)], 3), "HPI" = c(nat_diff2,

mid_diff2, WI_diff2))

p2 <- ggplot(transed2) + geom_line(aes(x = Year, y = HPI, colour = Type)) +

facet_wrap(~Type, scales = "free", ncol=3) + ylab("Second Difference") +

theme(legend.position="none")

gridExtra::grid.arrange(p1,p2)

#Step 3: Find pool of models for second diff

par(mfrow=c(1,3))

acf(mid_diff2, col = "red", main = "Midwest", xlab = "") #AR(2) MA(4)

acf(nat_diff2, col = "darkgreen", main = "National", ylab = "") #AR(2) MA(3)

acf(WI_diff2, col = "blue", main = "Wisconsin", ylab = "", xlab = "") #AR(2) MA(2) MA(4)

par(mfrow=c(1,3))

pacf(mid_diff2, col = "red", main = "Midwest", xlab = "") #AR(3) #AR(5)

pacf(nat_diff2, col = "darkgreen", main = "National", ylab = "") #AR(2)

pacf(WI_diff2, col = "blue", main = "Wisconsin", ylab = "", xlab = "") #AR(3)

eacf(nat_diff2) #ARMA(2,3)
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AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x o o o o o x o x o o x

1 x x x o o o o o x o o o o x

2 o o o o o o o o o o o o o o

3 x o o o o o o o o o o o o o

4 x o x o o x o o o o o o o o

5 x o x o o x o o o o o o o o

6 o o x o o x o o o o o o o o

7 o x x o o x o o o o o o o o

eacf(mid_diff2) #ARMA(2,6)

AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 o x o x o o o o x o o o o o

1 x x o x x o o o x o x o x o

2 x o x x o x o o o o o o o o

3 o o x x o x o o o o o o o o

4 o x x x o x o o o o o o o o

5 x x x o o x o o o o o o o o

6 x o x o o x o o o o o o o o

7 x o x x o o o o o o o o o o

eacf(WI_diff2) #MA(4)

AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x o x o o o o o o o o o o

1 x x o x o o o o o o o o o o

2 x x x x o o o o o o o o o o

3 o x o x o o o o o o o o o o

4 x x o x o o o o o o o o o o

5 o x o o o o o o o o o o o o

6 o x o o o o o o o o o o o o

7 x x o o o o o o o o o o o o

par(mfrow = c(1,3))

plot(armasubsets(mid_diff2, nar = 12, nma = 12), col = "red"); title("Midwest")

plot(armasubsets(nat_diff2, nar = 12, nma = 12), col = "darkgreen"); title("National")

plot(armasubsets(WI_diff2, nar = 12, nma = 12), col = "blue"); title("Wisconsin")

#ARMA(9, 1) with zeros

#AR(2) AR(3)

#Step 3: Fit models and determine AICc

AICc <- function(model, params, n) {

-2*logLik(model) + (2*(params + 1)*n)/(n - params - 2)

}

#AICc #National #Midwest #Wisconsin

#AR(2) -1826.012* -2362.055 -1221.921

#AR(3) -1824.055 -2370.101 -1232.339*

#AR(5) -1821.335 -2373.637* -1230.323

#MA(3) -1820.946 -2363.714 -1228.139

#MA(4) -1822.218 -2372.163 -1228.611

#ARMA(2,3) -1826.98* -2367.418 -1228.54

#ARMA(2,6) -1824.153 -2368.114 -1227.224

#ARMA(9,1) -1824.934 -2373.077* -1232.435*

#Best two models for each can be delved further
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#Step 4: Choose final model for each based prediction on power transformed data

library(TSA)

prediction_error <- function(model, newdata) {

preds <- predict(model, length(newdata))$pred

mean(abs(newdata - preds))*1000

}

#National ARIMA(2,0,0) ARIMA(2,0,3)

inds <- 1:82

prediction_error(arima(nat_diff2[inds], order = c(2,0,0),include.mean = F), nat_diff2[-inds])

prediction_error(arima(nat_diff2[inds], order = c(2,0,3),include.mean = F), nat_diff2[-inds])

# 0.0224, 0.0282

#Midwest ARIMA(5,0,0) ARIMA(9,0,1) w/ zeros

prediction_error(arima(mid_diff2[inds], order = c(5,0,0), include.mean = F), mid_diff2[-inds])

prediction_error(arima(mid_diff2[inds], order = c(9,0,1), include.mean = F, fixed = c(0,NA,0,0,0,0,0,0,NA,NA)), mid_diff2[-inds])

#0.0023, 0.0017

#Wisconsin AR(3) ARMA(9,1) w/ zeros

prediction_error(arima(WI_diff2[inds], order = c(3,0,0), include.mean = F), WI_diff2[-inds])

prediction_error(arima(WI_diff2, order = c(9,0,1), include.mean = F, fixed = c(0,NA,0,0,0,0,0,0,NA,NA)), WI_diff2[-inds])

#.4939, .6254

#Final models

mod_nat <- arima(nat_diff2, order = c(2,0,0), include.mean = F)

mod_mid <- arima(mid_diff2, order = c(9,0,1), include.mean = F, fixed = c(0,NA,0,0,0,0,0,0,NA,NA))

mod_wi <- arima(WI_diff2, order = c(3,0,0), include.mean = F)

#Step 5: Residual diagnostics

library(ggplot2)

library(TSA)

res_nat <- rstandard(mod_nat)

res_mid <- rstandard(mod_mid)

res_wi <- rstandard(mod_wi)

res <- data.frame("Type" = c(rep("National", 100), rep("Midwest", 100), rep("Wisconsin", 100)),

"Residual" = c(res_nat, res_mid, res_wi))

ggplot(res) + stat_qq(aes(sample = Residual, colour = Type)) +

geom_abline(intercept = 0, slope = 1, linetype = 2) + facet_wrap(~Type, nrow =3)+

theme(legend.position="none") + xlab("Theoretical Quantiles") + ylab("Sample Quantile")

ggplot(res) + geom_density(aes(Residual, fill = Type), adjust = 1/4) +

facet_wrap(~Type) + ylab("Density") +

xlab("Standardized Residual")+ theme(legend.position="none")

shapiro.test(res_nat) #.598

shapiro.test(res_mid) #.5846

shapiro.test(res_wi) #.01995

runs(res_nat)$pvalue #0.918

runs(res_mid)$pvalue #0.84

runs(res_wi)$pvalue #0.652

tsdiag(mod_nat)

tsdiag(mod_mid)

tsdiag(mod_wi)

par(mfrow=c(1,3))

pacf(res_mid, main = "Midwest", col = "red")

pacf(res_nat, main = ’National’, col = "darkgreen")

pacf(res_wi, main = "Wisconsin", col = "blue")

par(mfrow=c(1,3))
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acf(res_mid, main = "Midwest", col = "red")

acf(res_nat, main = ’National’, col = "darkgreen")

acf(res_wi, main = "Wisconsin", col = "blue")

#Step 6: Fit models and forecast new HPI

nat <- arima(national, order = c(2,2,0), include.mean = F)

nat_preds <- predict(nat, 12)

nat_fit <- nat_preds$pred

nat_lower <- nat_fit - 2*nat_preds$se

nat_upper <- nat_fit + 2*nat_preds$se

mid <- arima(midwest, order = c(9,2,1), include.mean = F, fixed = c(0,NA,0,0,0,0,0,0,NA,NA))

mid_preds <- predict(mid, 12)

mid_fit <- mid_preds$pred

mid_lower <- mid_fit - 2*mid_preds$se

mid_upper <- mid_fit + 2*mid_preds$se

wi <- arima(wisc, order = c(3,2,0), include.mean = F)

wi_preds <- predict(wi, 12)

wi_fit <- wi_preds$pred

wi_lower <- wi_fit - 2*wi_preds$se

wi_upper <- wi_fit + 2*wi_preds$se

inv_trans <- function(y, lambda) {

(y*lambda + 1)^(1/lambda)

}

#Transforming back to orginial units

nat_fit <- inv_trans(nat_fit, -1)

nat_lower <- inv_trans(nat_lower, -1)

nat_upper <- inv_trans(nat_upper, -1)

mid_fit <- inv_trans(mid_fit, -1.5)

mid_lower <- inv_trans(mid_lower, -1.5)

mid_upper <- inv_trans(mid_upper, -1.5)

wi_fit <- inv_trans(wi_fit, -.5)

wi_lower <- inv_trans(wi_lower, -.5)

wi_upper <- inv_trans(wi_upper, -.5)

prediction_intervals <- data.frame("Year" = rep(c(natl_HPI$Year, seq(2016.50, 2019.25,.25)),3)

,"Method" = c(rep("Midwest", 114), rep("National", 114), rep("Wisconsin", 114))

, "Lower" = c(rep(0,102),mid_lower,rep(0,102),nat_lower,rep(0,102),wi_lower)

, "HPI" = c(midwst_HPI$HPI, mid_fit,natl_HPI$Index_NSA,nat_fit,WI_HPI$index_nsa,wi_fit)

, "Upper" = c(rep(0,102),mid_upper,rep(0,102),nat_upper,rep(0,102),wi_upper)

)

pi <- prediction_intervals

pi$Lower[pi$Lower == 0] <- pi$HPI[pi$Lower == 0]

pi$Upper[pi$Upper == 0] <- pi$HPI[pi$Upper == 0]

prediction_intervals <- pi

ggplot(prediction_intervals) + geom_line(aes(x = Year, y = HPI, colour = Method, linetype = Method)) +

geom_ribbon(aes(x = Year, ymin = Lower, ymax = Upper, colour = Method, fill = Method), alpha=.3, colour = NA) +

ylab("Home Price Index")

ggplot(prediction_intervals[prediction_intervals$Year >= 2016,]) + geom_line(aes(x = Year, y = HPI, colour = Method, linetype = Method)) +

geom_ribbon(aes(x = Year, ymin = Lower, ymax = Upper, colour = Method, fill = Method), alpha=.3, colour = NA) +

ylab("Home Price Index")
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