Midwest Home Price Index v.s. National Average from 1991-2016

Alex Zajichek

 $\begin{array}{c} \text{May 5, 2017} \\ \text{Applied Time Series Analysis, Spring 2017} \end{array}$

Measured by the Federal Housing Finance Agency

- Measured by the Federal Housing Finance Agency
- Quantifies movement of single-family detached home prices by estimating average price changes in repeat sales or refinancing of the same properties

- Measured by the Federal Housing Finance Agency
- Quantifies movement of single-family detached home prices by estimating average price changes in repeat sales or refinancing of the same properties
- Complex methodology used to get estimates is described by the FHFA

- Measured by the Federal Housing Finance Agency
- Quantifies movement of single-family detached home prices by estimating average price changes in repeat sales or refinancing of the same properties
- Complex methodology used to get estimates is described by the FHFA
- Interested in comparing Midwest HPI with the national average

Original series

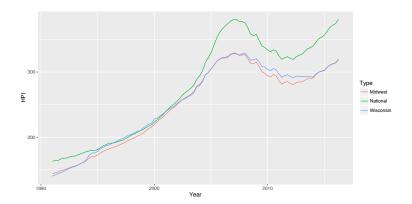


Figure: Original quarterly HPI for each of the three regions

Box Cox Transformation

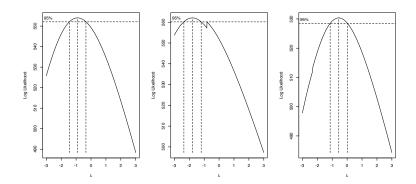


Figure: From left to right, the likelihood for a Box-Cox variance stabilizing parameter are shown for the national, Midwest, and Wisconsin series', respectively.

Box Cox Transformation

$$y^* = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(y) & \text{if } \lambda = 0 \end{cases}$$

$$N_t^* = 1 - N_t^{-1}$$
 $M_t^* = \frac{1 - M_t^{-1.5}}{1.5}$ $W_t^* = \frac{1 - W_t^{-0.5}}{0.5}$

Transformed HPI

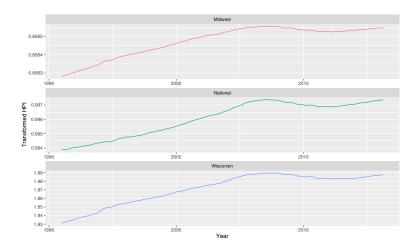


Figure: Quarterly HPI for each region after using the Box-Cox transformation.

Augmented Dickey-Fuller Test

Series	Y_t^*	∇Y_t^*	$\nabla^2 Y_t^*$
National	0.5237	0.6559	< 0.01
Midwest	0.4488	0.7507	< 0.01
Wisconsin	0.5581	0.6327	< 0.01

Table: P-values from the *Augmented Dickey-Fuller* for the transformed data, first difference, and second difference, respectively, for each series.

Differenced series'

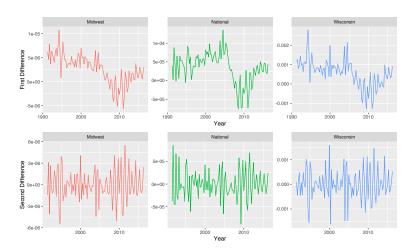


Figure: Plots for each of the three series after taking the *first difference* (top), and the *second difference* (bottom)

Autocorrelation of $\nabla^2 Y_t^*$

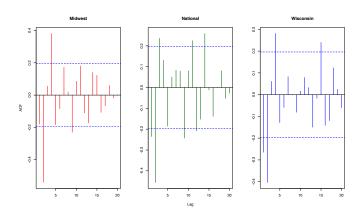


Figure: Autocorrelation for each (stationary) series after differencing twice.

Autocorrelation of $\nabla^2 Y_t^*$

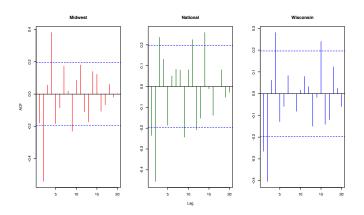


Figure: Autocorrelation for each (stationary) series after differencing twice.

MA(2), MA(3), MA(4), AR(2)

Partial-autocorrelation of $\nabla^2 Y_t^*$

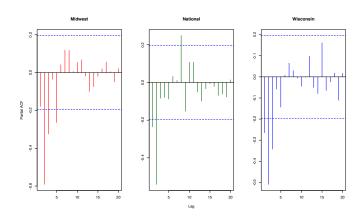


Figure: Partial-autocorrelation for each (stationary) series after differencing twice.

Partial-autocorrelation of $\nabla^2 Y_t^*$

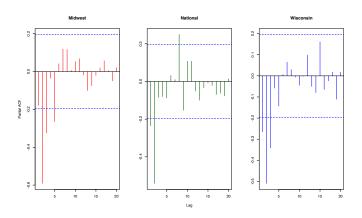


Figure: Partial-autocorrelation for each (stationary) series after differencing twice.

AR(2), AR(3), AR(5)

armasubsets

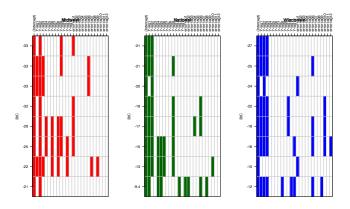


Figure: Plots produced by armasubsets suggesting potential models for each series according to the BIC criterion.

armasubsets

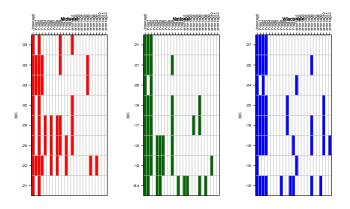


Figure: Plots produced by armasubsets suggesting potential models for each series according to the BIC criterion.

ARMA(9,1), AR(2), AR(3)

Final Model Pool

AR(2) AR(3) AR(5) MA(3) MA(4) ARMA(2,3) ARMA(2,6) ARMA(9,1)

Reducing Pool with AICc

Series	AR(2)	AR(3)	AR(5)	MA(3)	MA(4)
National	-1826.012	-1824.055	-1821.335	-1820.946	-1822.218
Midwest	-2362.055	-2370.101	-2373.637	-2363.714	-2372.163
Wisconsin	-1221.921	-1232.339	-1230.323	-1228.139	-1228.611

Series	ARMA(2,3)	ARMA(2,6)	ARMA(9,1)
National	-1826.98	-1824.153	-1824.934
Midwest	-2367.418	-2368.114	-2373.077
Wisconsin	-1228.54	-1227.224	-1232.435

Table: Corrected AIC values for potential models of each series. Bolded values are within two of minimum of the corresponding row.

Choosing Final Model with MAD

$$\mathit{MAD} = \frac{\sum_{i=1}^{n} |\nabla^{2} Y_{t}^{*} - \widehat{\nabla^{2} Y_{t}^{*}}|}{n}$$

where $\widehat{\nabla^2 Y_t^*}$ is the predicted value of the second difference.

National	MAD	Midwest	MAD	Wisconsin	MAD
AR(2)		AR(5)	0.00994		2.072
ARMA(2,3)	0.142	ARMA(9,1)	0.00987	ARMA(9,1)	4.080

Table: Mean absolute difference of the last 5 observations (\times 10000) for the best two models according to AICc for each series.

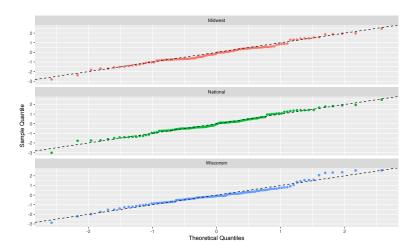


Figure: Quantile-quantile plots of the standardized residuals for the final model chosen on each series.

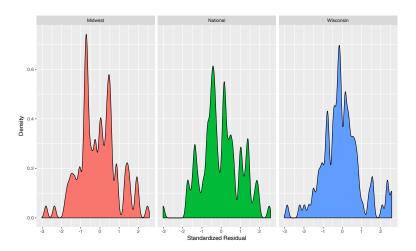


Figure: Density plots of the standardized residuals for the final model chosen on each series. A flexible bandwidth was chosen to ensure an accurate check for normality.

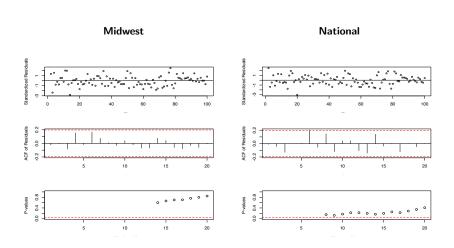
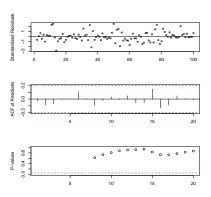
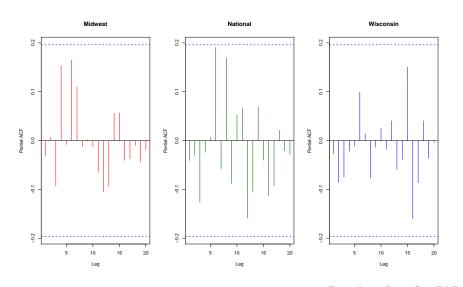




Table: Figure 10: Model diagnostic plots produced by tsdiag for each series containing a time plot and autocorrelation plot for the standardized residuals, as well as the Ljung-Box test for a number of dags.

Wisconsin

Forecasting

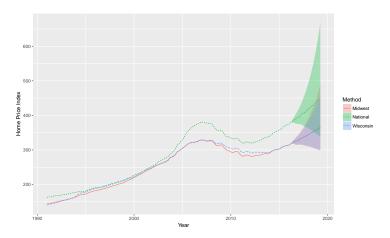


Figure: HPI forecasts with 95% prediction intervals for 2016-Q2 through 2019-Q2.

Forecasting

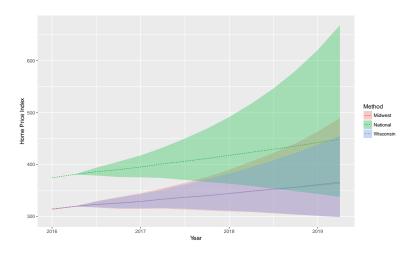


Figure: *

Figure 13: Zoomed plot of the 3-year forecast to assess predictions.

Forecasts

Year	Quarter	Midwest	National	Wisconsin
2016	3	323.20	386.23*	323.23
	4	325.36	390.09*	325.78
2017	1	328.66	395.28*	329.03
	2	333.20	401.23*	333.30
	3	336.73	406.37*	337.07
	4	339.92	411.63	340.35
2018	1	344.13	417.63	344.05
	2	348.88	423.59	348.16
	3	352.56	429.44	352.09
	4	356.32	435.69	355.87
2019	1	361.21	442.21	359.89
	2	366.10	448.76	364.11

Table: HPI forecasts for the following 3 years for each region. The asterisk(*) indicates non-overlapping 95% prediction intervals for the National series with both the Midwest and Wisconsin series'. Note that all estimates for the latter two are very similar, with almost identical prediction intervals.