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Näıve Bayes’ Methodology
Model Evaluation

Results
Future work

Modeling the probability of an NHL goal for
player-placement strategy:
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Objective

Previous work

Not much work has been done on this specific application

A few papers have used logistic regression to model goal
probabilities as part of different objectives

Gramacy, Jensen, and Taddy modeled player contribution
towards a goal
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Objective

Goals:

Propose a crude but simple alternative to model goal
probabilities

Compare model performance to logistic regression

Create R shiny application to explore results

Possible Implications:

Understand shot characteristics more likely to lead to a goal

Put players in favorable (or unfavorable) situations on the ice
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nhlscrapr
Predictors

The Data: nhlscrapr

R package giving web-scraping abilities to download NHL
play-by-play data

Observation example:

season gcode refdate event period seconds etype

20092010 20001 2830 1 1 0 FAC

a1 a2 ... ... ...

9 BRENDAN MORRISON 21 BROOKS LAICH ... ... ...
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Predictors

Predictors

Considered 579181 shots taken from 2007-2015 within 65
minutes of gameplay (2002 - 2006 didn’t contain shot
coordinates)

Predictors used: angle, catch, distance, game type, height,
home, manpower, minute, position, shot side, type, weight
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Näıve Bayes’ Methodology
Model Evaluation

Results
Future work

nhlscrapr
Predictors

Predictors

Considered 579181 shots taken from 2007-2015 within 65
minutes of gameplay (2002 - 2006 didn’t contain shot
coordinates)

Predictors used: angle, catch, distance, game type, height,
home, manpower, minute, position, shot side, type, weight

Alex Zajichek Modeling the probability of an NHL goal for player-placement strategy:



Introduction
The Data
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Näıve Bayes’ Methodology

For a given shot taken during an NHL game, let

Yi =

{
1 for a goal

0 for a save (1)

and xi = (xi1, xi2, ..., xi12) be the 1 x 12 predictor vector for the i th

shot taken, where j = 1, ..., 5 for continuous predictors, and
j = 6, ..., 12 for categorical.
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Näıve Bayes’ Methodology

Conditional densities and probability mass functions:

Continuous Categorical Marginal probabilities

Goal fj(xij |Yi = 1) Pj(Xij = xij |Yi = 1) P(Yi = 1)
Save fj(xij |Yi = 0) Pj(Xij = xij |Yi = 0) P(Yi = 0)
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Näıve Bayes’ Methodology

For the i th shot, if we let

Gi = P(Yi = 1)×
5∏

j=1

fj (xij |Yi = 1)×
12∏
j=6

Pj (Xij = xij |Yi = 1) (2)

Si = P(Yi = 0)×
5∏

j=1

fj (xij |Yi = 0)×
12∏
j=6

Pj (Xij = xij |Yi = 0) (3)

P(Yi = 1|Xi = xi ) =
P(Yi = 1,Xi = xi )

P(Xi = xi )

=
P(Yi = 1,Xi = xi )

P(Yi = 1,Xi = xi ) + P(Yi = 0,Xi = xi )

=
P(Yi = 1)× P(Xi = xi |Yi = 1)

P(Yi = 1)× P(Xi = xi |Yi = 1) + P(Yi = 0)× P(Xi = xi |Yi = 0)

näıve assumption→ =
Gi

Gi + Si
(4)
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Empirical Näıve Bayes’ (ENB)

Assumed no parametric form to predictors

Used R’s density and approxfun functions to obtain density
estimates of continuous predictors

Categorical probabilities were calculated as the proportion of
observations belong to a given level

Evaluated equation (4) to obtain predicted probabilities
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Näıve Bayes’ Methodology
Model Evaluation

Results
Future work

Empirical Näıve Bayes’
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Parametric Näıve Bayes’ (PNB)

Examined empirical densities to determine common
parametric model to fit to each predictor

In the spirit of the näıve approach, some approximations were
crude, but chosen for simplicity

Parameters were estimated by maximum likelihood once a
model was chosen
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Parametric Näıve Bayes’ (PNB)

Predictor Parametric distribution
Angle Weibull

Distance Gamma
Height Normal
Minute Weighted Uniform
Weight Normal
Catch Binomial

Game type Binomial
Home Binomial

Manpower Multinomial
Position Binomial

Shot side Binomial
Type Multinomial

For categorical predictors, ML estimates are just the sample
proportions, so no difference occurred between ENB and PNB
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Angle and Distance
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Model Evaluation

If p̂i is the predicted probability, then for a given classification
threshold, t ∈ [0, 1], we can define a classification as

ŷi =

{
1 if p̂i ≥ t

0 if p̂i < t (5)
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Model Evaluation

If yi is the observed outcome of the i th shot and n is the total
number of shots taken, then

error rate→ ER =

∑n
i=1 1(yi 6= ŷi )

n
(6)

false positive rate→ FPR =

∑n
i=1 1(yi 6= ŷi )(1− yi )

n −
∑n

i=1 yi
(7)

false negative rate→ FNR =

∑n
i=1 1(yi 6= ŷi )yi∑n

i=1 yi
(8)

where

1(yi 6= ŷi ) =

{
1 if yi 6= ŷi

0 if yi = ŷi (9)

*10-fold CV was carried out to obtain accurate estimates of each of the three error

measures at a set of thresholds {0,0.01,0.02,...,0.99,1}.
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Model comparison
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Model comparison

Error rate False postive rate
Model Optimal Threshold ENB Logistic PNB ENB Logistic PNB
ENB .0566 .3340 .4940 .4717 .3339 .5263 .4975

Logistic .0932 .2229 .3169 .3271 .1940 .3169 .3259
PNB .0913 .2271 .3231 .3325 .1994 .3245 .3325

False negative rate ROC curve
ENB Logistic PNB AUC
.3340 .1503 .1974 .7117
.5312 .3170 .3394 .7351
.5213 .3080 .3325 .7122
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Comparison
Implications
R shiny application

Implications

ENB better for identifying where players should not shoot
from (maximum true negative rate)

PNB and logistic regression better for identifying where
players should shoot from (maximum true positive rate)

Use combination of methods depending on strategic approach
(offense/defense)
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R shiny application

https://alexzajichek.shinyapps.io/nhlshiny/
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Future Work

Build more complex model by taking into account individual
skill, and team skill

Broaden the scope of the analysis to account for shoot-outs
and all of overtime
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